BIG PIVOTS: Less Water, More Food? Part One

This story by Allen Best appeared on ‘Big Pivots’ on December 27, 2022. It was first published in the summer 2022 issue of Headwaters Magazine. We are sharing it in four installments.

Raw water in Colorado has been carved up almost entirely. The new frontier in agriculture lies in innovating ways to milk as much — or more — production out of every acre-foot of water.

At Spring Born, a greenhouse in western Colorado near Silt, you see few, if any, dirty fingernails. Why would you? Hands never touch soil in this 113,400-square-foot greenhouse. You do see automation, long trays filled with peat sliding on conveyors under computer-programmed seeding devices. Once impregnated, the trays roll into the greenhouse.

Thirty days after sprouting, trays of green and red lettuce, kale, arugula, and mustard greens slide from the greenhouse to be shorn, weighed and sealed in plastic clamshell packages. Hands never touch the produce.

“The best lettuce I’ve ever had from a package,” said my companion three days after our tour when we finally broke into the package we’d received. “It just tastes fresh.”

Water savings of this automated agricultural production had motivated our visit. Spring Born says it needs 95% less water compared to leafy greens grown using Colorado River water 1,000 miles downstream in Arizona and California. That region supplies more than 90% of the nation’s lettuce. At Silt, the water comes from two shallow wells that plumb the riverine aquifer of the Colorado River, delivering about 20 gallons per minute. The water is then treated before it is piped into the greenhouse.

This is agriculture like nowhere else.

Great precautions are taken to avoid contamination and prevent the spread of pathogens. Those entering the greenhouse must don protective equipment such that you might wonder if you had instead wandered into the surgery ward of a hospital. There’s no opportunity for passing birds or critters to leave droppings. As such, there is no need for chlorine washes, which most operations use to disinfect. Those washes also dry out the greenery, shortening the shelf life and making it less tasty. The Spring Born packages have an advertised shelf life of 23 days.

Spring Born likely constitutes the most capital-intensive agricultural enterprise in Colorado. Total investment in the 250-acre operation, which also includes traditional hay farming and cattle production, has been $30 million. The technology and engineering come from Europe, which has 30 such greenhouses. The United States has a handful.

Innovation, such as what is employed at Spring Born, at the intersection of agriculture and water today occurs in Colorado operations both massive and minuscule. Those innovators range from farmers whose families broke the soil and got into the business generations ago to those who have been producing food for only a few years. Most are traditionally hands-on. Spring Born is deliberately hands-off.

This tinkering in the agribusiness that in Colorado generates $47 billion in economic activity has many motivations, but most tie to one reality: The future is one of less water. So how exactly can agriculture use water more judiciously?
The Thirsty Future

A Desert Research Institute study published in the April 2022 Journal of Hydrometeorology concluded that the warming atmosphere is a thirstier one. Modeling in the study suggests that crops in some parts of Colorado already need 8% to 15% more water than 40 years ago. Agricultural adaptations to use less water are happening out of necessity.

Colorado has warmed about 2.5 degrees Fahrenheit in the last 120 years. Warming has accelerated, with the five hottest summers on record occurring since 2000.

Higher temperatures impact the amount of snowfall and amount of snowpack converted to water runoff. “As the climate warms, crops and forested ecosystems alike use water more rapidly,” says Peter Goble, a research associate at the Colorado Climate Center. “As a result, a higher fraction of our precipitation goes into feeding thirsty soils and a lower fraction into filling our lakes, streams and reservoirs. Essentially, a warmer future is a drier future.”

Dry, hot years have far outpaced wet years since 2000. Cool years have been nearly absent. This aridification has become particularly evident in southern Colorado. This year was a good example of the drying trend.

Snowpack was around average in the San Juan Mountains, but spring arrived hot and windy. Snow was all but gone by late May, surpassed in its hurried departure only in 2018 and 2002. Farmers dependent on water from the Dolores River, still reeling from last year’s meager supplies, were required to accept lesser supplies yet again as the growing season began this year.

The Ute Mountain Ute Farm and Ranch Enterprise, the most southwesterly agriculture operation in Colorado, expected less than 30% of its regular allocation from McPhee Reservoir, as of June. This was on top of a marginal year in 2021, too. Simon Martinez, general manager of the operation, said just 15 of the 110 center pivots had crops under cultivation in early June. Employment was cut in half, and the 650-head cow-calf operation had been slimmed to 570.

The Ute Mountain Ute Tribe Farm and Ranch Enterprise’s cattle herd was slimmed by more than 12% this year because of another sub-par spring runoff from the San Juan Mountains, upon which the tribe depends for water. Summer rain improved the outlook somewhat from when this photo was taken in mid-May. Photo/Allen Best

Aridification best describes the drying underway in southwestern Colorado. April 1 snow-water equivalent, or the amount of water contained by the snow, in the San Juans has averaged 9.7 inches since 2000, according to the National Oceanic and Atmospheric Administration. During the prior 60 years it was 12.3 inches.

The warming climate is not alone in spurring adaptations and causing worries. In many river basins, irrigators must also worry about delivery of water to downstream states specified by interstate compacts.

Groundwater declines interlace with struggles to meet compact deliveries. The 2019 Technical Update to the Colorado Water Plan projects that 6% to 7% of irrigated acres supplied by groundwater in the state will be lost due to aquifer sustainability issues, primarily in the Arkansas, Republican and Rio Grande basins.

Declines of the Ogallala and other aquifers of the High Plains have been well documented. Consider output of the wells supplying Colorado State University’s Plainsman Research Center at Walsh. Arriving there in 1989, Kevin Larson, the superintendent, had one well that produced 250 gallons per minute. Now it produces so little, 18 to 19 gallons per minute, that no attempt is made to pump it. Production from the two other wells at the station has also dropped precipitously.

“Our wells are dropping, so we need to be more cautious with our water use,” says Larson.

Read Part Two…

Allen Best

Allen Best publishes the e-journal Big Pivots, which chronicles the energy transition in Colorado and beyond.